With the effort of all the FTC persons, we got fast development since inception.Learn more

Professional PCB & PCBA MANUFACTURER

FOCUS ON ONE-STOP SERVICE

Popular PCB

125khz rfid pcb antenna design

FasTechCircuit is a high-quality electronic manufacturing services (EMS) provider in China. We provide full industry chain services to global customers, including PCB layout, material procurement, PCB assembly, cable assembly, complete machine assembly, and comprehensive testing services. Established in 2003, we have over 20 years of experience in electronics contract assembly manufacturing. We currently employ over 150 people. Our 4,000 square meter facility includes 6 Surface Mount Technology (SMT) production lines, 2 Through Hole Technology (THT) production lines, 2 functional test lines and 2 complete assembly lines. FasTechCircuit mainly provides PCB assembly services for energy, power, communications, aviation, security, medical equipment, consumer electronics, smart home appliances, LED lighting, industrial, and automotive electronics.

Our customers mainly come from 50 regions around the world including Spratly Islands,Japan,Micronesia, Federated States of,French Guiana. As an ISO9001 certified electronics assembly manufacturer, all projects we undertake are fully compliant with ROHS standards and quality assurance. Based on our engineering excellence and production capabilities in technology areas such as material analysis and storage, advanced equipment, reliability testing (AOI, X-RAY, ICT testing and functional testing), efficient SMT and THT assembly, we are recognized as a global leader in A PCBA supplier that more and more customers have trusted for a long time. Welcome to visit us for inspection at any time.




Base Material
FR-4/CEM-1/CEM-3/Polyimild/PTFE/Rogers
Board Thickness
0.2-6mm
Model Number
Custom PCB & PCB Assembly
Type
Aluminum PCB
Brand Name
FC
Copper Thickness
0.5-2mil(11-47um)
Min. Hole Size
0.1mm(4mil)for HDI / 0.15mm(6mil)
Min. Line Width
0.075mm/0.075mm(3mil/3mil)
Min. Line Spacing
0.003''
Surface Finishing
HASL/OSP/Ag/ENIG/ENEPIG/Immersion silver/Tin
Board Size
Custom
Model Number
Customized
Base Material
FR4 Aluminum CEM-1 94V0
Surface Finishing
HASLENIG OSP
Number of layer
1-12layer
Other service
Components purchasing and assem
ly Solder mask
White Black Green Blue,Red,etc.
Dsign service
Available
Testing
Function testing
Certificate
RoHS, ISO/TS16949, ISO9001
Name
High Quality led light aluminum pcb printed circuit board
Packaging Details

Vaccum package and standard carton outside

High Quality led light aluminum pcb printed circuit board

Supply Ability
47233 Square Meter/Square Meters per Month
Quantity (pieces)
> 18892
Lead time (days)
13










125khz rfid pcb antenna design bearings FAQs Guide Welcome to our state-of-the-art PCB (Printed Circuit Board) products. We are proud to offer a comprehensive range of high-quality and versatile PCB solutions to meet the constantly evolving needs of the modern electronics industry.Our PCBs are expertly designed and manufactured using the latest technology and advanced techniques, ensuring reliability, durability, and exceptional performance for a wide range of applications. We understand the importance of precision and attention to detail in the production of PCBs and we are committed to meeting stringent quality standards.
1.How are 125khz rfid pcb antenna designs protected from moisture and humidity?
2.What are some common problems that can occur with 125khz rfid pcb antenna design?
3.How are signal traces routed on a 125khz rfid pcb antenna design?
4.What techniques are used for reducing electromagnetic interference (EMI) on a 125khz rfid pcb antenna design?
5.What is the function of a resistor on a 125khz rfid pcb antenna design?
6.How are holes drilled into a 125khz rfid pcb antenna design?
7.How does a 125khz rfid pcb antenna design work?
8.What is the role of silkscreen on a 125khz rfid pcb antenna design?
9.What is the role of vias on a 125khz rfid pcb antenna design?
10.What is the purpose of a ground plane on a 125khz rfid pcb antenna design?
11.What is the standard thickness for copper used in 125khz rfid pcb antenna designs?
12.What are the main components of a 125khz rfid pcb antenna design?
13.How are 125khz rfid pcb antenna designs tested for quality control?

1.How are 125khz rfid pcb antenna designs protected from moisture and humidity?

PCB (Printed Circuit Boards) are susceptible to damage from moisture and humidity, which can result in malfunction or even complete failure of electronic devices. Therefore, it is necessary to take measures to protect PCBs from these elements.
One way to protect PCBs from moisture is by using a conformal coating. This is a thin layer of protective material that is applied to the surface of the PCB. It acts as a barrier, preventing moisture from coming into contact with the sensitive components on the board.
Another method is to use moisture-resistant materials for the PCB itself. This can include using moisture-resistant coatings or laminates for the board, as well as corrosion-resistant materials for the conductors and connectors.
In addition to these preventive measures, PCBs can also be stored in controlled environments with low humidity levels. This can help to minimize the amount of moisture that comes into contact with the boards, reducing the risk of damage.
Regular maintenance and periodic testing can also help to ensure the continued protection of PCBs from moisture and humidity. By taking these precautions, electronic devices can maintain their functionality and reliability, even in environments with high humidity levels.

2.What are some common problems that can occur with 125khz rfid pcb antenna design?

Our 125khz rfid pcb antenna design products undergo strict quality control to ensure customer satisfaction.
PCB (printed circuit boards) are an integral part of electronic devices, serving as the foundation for electrical connections and components. However, like any other technology, there are certain issues that may arise with PCB. One common problem is damage to the board due to excessive heat, as electronic components generate heat and if the PCB is not properly designed or ventilated, it can lead to malfunctions or even permanent damage. Another issue is poor soldering, which can result in weak connections or no connection at all. This can be caused by inadequate equipment or inexperience in the assembly process. Additionally, PCB can also suffer from corrosion over time, especially in high humidity environments, affecting its performance and reliability. It is important to address these problems early on to prevent further damage and ensure the functionality of electronic devices. Regular maintenance, proper design and assembly techniques, and use of quality materials can help prevent these common issues with PCB.

3.How are signal traces routed on a 125khz rfid pcb antenna design?

Signal traces are an essential element of a PCB, responsible for carrying electronic signals between components and ensuring proper communication and functionality of the circuit. To route these traces, designers use specialized software to determine the most efficient and optimal path for each signal, taking into account factors such as signal integrity, trace length, and potential interference. This process involves careful planning, as well as techniques such as vias, ground and power planes, and differential pairs to minimize noise and maintain signal integrity.

How are signal traces routed on a 125khz rfid pcb antenna design?

4.What techniques are used for reducing electromagnetic interference (EMI) on a 125khz rfid pcb antenna design?

Electromagnetic interference (EMI) is a disturbance caused by electromagnetic radiation that can disrupt the proper functioning of electronic devices. To reduce EMI on a PCB, a number of techniques can be employed. One common technique is to use a ground plane, which acts as a shield to block electromagnetic waves from interfering with the circuit. Another approach is to use proper placement and routing of components and traces to minimize the length of signal paths and reduce the chances of signal crossover. Additionally, using components like capacitors and ferrite beads can help to filter out high-frequency noise. Careful consideration and design of the PCB layout is also crucial in reducing EMI, as the placement, size, and orientation of components can impact electromagnetic emissions. By employing these techniques, EMI on a PCB can be effectively reduced, leading to improved performance and reliability of electronic devices.

5.What is the function of a resistor on a 125khz rfid pcb antenna design?

We are a new 125khz rfid pcb antenna design manufacturer.
The ground plane on a printed circuit board (PCB) serves as a reference point for the electrical signals that flow throughout the circuit. It is typically a large area of copper that is connected to the negative terminal of the power supply and serves as a low-impedance return path for current. Its main purpose is to provide a stable and uniform ground connection for the components on the PCB, helping to reduce electromagnetic interference and ensuring proper signal grounding. Without a ground plane, the circuit may experience noise and other unwanted effects, potentially causing malfunctions or disruptions in its functionality. Therefore, the ground plane plays a crucial role in ensuring the overall performance and reliability of a PCB.

6.How are holes drilled into a 125khz rfid pcb antenna design?

We actively participate in the 125khz rfid pcb antenna design industry associations and organization activities. The corporate social responsibility performed well, and the focus of brand building and promotion.
Drilling holes into printed circuit boards (PCBs) is a critical part of the PCB manufacturing process. These holes are used for mounting electronic components and for creating electrical connections between different layers of the board. There are two main methods for drilling holes into a PCB – mechanical drilling and laser drilling. Mechanical drilling involves using a high speed drill bit to physically drill through the board, while laser drilling uses a high-powered laser to vaporize the material and create the holes. Both methods have their own advantages and are often used in combination to achieve the desired hole sizes and precision. Regardless of the method, the holes are carefully planned and executed to ensure the successful production of a high-quality PCB.

How are holes drilled into a 125khz rfid pcb antenna design?

7.How does a 125khz rfid pcb antenna design work?

We maintain a stable growth through reasonable capital operations, focus on industry development trends and cutting -edge technologies, and focus on product quality and safety performance.
A PCB (Printed Circuit Board) is a thin board made of non-conductive material, such as fiberglass or plastic, with conductive pathways etched or printed onto its surface. These pathways, also known as traces, are used to connect electronic components on the board, such as resistors, capacitors, and integrated circuits.

The PCB works by providing a platform for the components to be mounted and connected in a specific circuit configuration. The traces on the board act as wires, allowing electricity to flow between the components and creating a complete circuit.
The process of creating a PCB involves several steps, including designing the circuit layout, printing or etching the traces onto the board, and attaching the components using soldering techniques. Once the components are attached, the board is tested to ensure that all connections are correct and functioning properly.
When a PCB is connected to a power source, electricity flows through the traces, powering the components and allowing them to perform their intended functions. The traces also act as a pathway for signals to travel between components, allowing for communication and data transfer within the circuit.
PCBs are used in a wide range of electronic devices, from simple household appliances to complex computer systems. They provide a compact and efficient way to connect and control electronic components, making them an essential part of modern technology.

8.What is the role of silkscreen on a 125khz rfid pcb antenna design?

Being one of the top 125khz rfid pcb antenna design manufacturers in China, We attach great importance to this detail.
Silkscreen, also known as legend or nomenclature, is a vital component of a printed circuit board (PCB). It is the layer of text and symbols that are printed on the surface of the PCB to provide essential information for component placement and identification. The silkscreen plays a crucial role in the manufacturing process of PCBs, as it helps to ensure the accuracy and functionality of the final product. By indicating component locations, values, and reference designators, the silkscreen serves as a guide for the assembly and soldering of electronic components. Additionally, it also provides important information for maintenance and troubleshooting purposes.

9.What is the role of vias on a 125khz rfid pcb antenna design?

Our company has many years of 125khz rfid pcb antenna design experience and expertise.
Vias play a crucial role in connecting different layers of a printed circuit board (PCB). These small, plated holes act as conductive paths, allowing signals and power to pass through the board and reach various components. Vias are also essential for routing traces from one layer to another, optimizing the layout and reducing the size and complexity of the board. Additionally, vias provide structural support and improve thermal management by facilitating heat dissipation.

What is the role of vias on a 125khz rfid pcb antenna design?

10.What is the purpose of a ground plane on a 125khz rfid pcb antenna design?

I have a comprehensive after -sales service system, which can pay attention to market trends in time and adjust our strategy in a timely manner.
A decoupling capacitor is an essential component on a PCB (Printed Circuit Board) which is used to reduce or eliminate high frequency noise between different components. It acts as a buffer between the power supply and other circuit components, by storing electrical charge and then releasing it when there is a sudden change in the supply voltage. This helps to stabilize the power supply, providing a steady and noise-free flow of electricity to the circuit. Furthermore, decoupling capacitors also help to filter out any unwanted signals that may cause interference or disruptions in the proper functioning of the circuit.

11.What is the standard thickness for copper used in 125khz rfid pcb antenna designs?

The standard thickness for copper used in PCBs is 1 ounce (oz) or 35 micrometers (µm). However, thicker copper layers such as 2 oz or 3 oz can also be used for higher current carrying capacity or better heat dissipation. The thickness of copper used in a PCB is determined by the design requirements and the intended use of the board.

12.What are the main components of a 125khz rfid pcb antenna design?

We continuously upgrade our skills and knowledge to adapt to changing 125khz rfid pcb antenna design market needs.
A typical PCB consists of several vital components, including a substrate material, copper traces, solder mask, silk screen, and plated through-holes. The substrate material acts as the base and provides mechanical support for the board. Copper traces, usually made of thin lines of copper foil, serve as the conductive paths for transmitting electrical signals. The solder mask, applied as a protective layer, prevents accidental short circuits and corrosion. Silk screen, a layer of ink-based labeling, aids in component identification. Lastly, plated through-holes enable electrical connection between different layers of the PCB board. These components work together to form a fully functioning PCB.

What are the main components of a 125khz rfid pcb antenna design?

13.How are 125khz rfid pcb antenna designs tested for quality control?

We have broad development space in domestic and foreign markets. 125khz rfid pcb antenna design have great advantages in terms of price, quality, and delivery date.
PCB (Printed Circuit Board) testing is a critical step in the quality control process of electronic products. It ensures that all components and connections on the board are functioning correctly and that the PCB meets the required standards and specifications.
The testing process typically starts with a visual inspection to identify any visible defects, such as incorrect soldering or damaged components. Next, electrical testing is conducted to check the functionality of each individual component and the overall circuit.
One common method of testing is the use of a test fixture, which applies signals to the PCB and checks for correct responses. Other methods include automated optical inspection (AOI) and in-circuit testing (ICT).
Once the initial testing is completed, the PCB may undergo environmental testing to simulate real-life conditions and ensure its reliability and durability. This includes temperature and humidity cycling, vibration and shock testing, and more.


RELATED PRODUCTS & SERVICE

PCB Manufacturing and Assembly in China
Contact Us

pcb board manufacturing How To Contact US

PCB from 1 to 30 layers, HDI, Heavy Copper, Rigid-flex board with "pcb board manufacturing One-Stop" service.

Customer Support

Whatsapp

Contact us via Email

sales@fastechcircuit.com

Live Wechat with Us

Click here