With the effort of all the FTC persons, we got fast development since inception.Learn more

Professional PCB & PCBA MANUFACTURER

FOCUS ON ONE-STOP SERVICE

Popular PCB

4 layer pcb boards

FasTechCircuit is a high-tech company specializing in the production of 2 to 30-layer high-precision, high-density, and high-reliability PCBs. We provide PCB design, PCB cloning and PCBA assembly. We will do flying probe testing PCB, AOI or X-ray testing PCBA. We offer a wide range of manufacturing, engineering and machining services, including in-house vertically integrated high-precision SMT installation, plastic injection molding, high-volume metal stamping, die casting and custom manufacturing for automotive, industrial, medical, consumer, telecommunications, and technology companies, We focus on optimizing our clients' operations by reducing costs and shortening time to market.

In view of meeting the different quantity requirements of our customers, we have planned to expand our factory to meet all small to large orders and prototype additional requirements without MOQ (Minimum Order Quantity). We have won high praise from customers from Europe, America, Asia, United States of America,Greece,Uruguay,Ireland,Falkland Islands... and so on.




Number of Layers
4 layer
Base Material
gold sinking
Board Thickness
3MM
Board Size
251M*566MM
Model Number
4 layer pcb
Type
pcb
Place of Origin
Original
Brand Name
Original
Copper Thickness
3OZ
Min. Hole Size
custom made
Min. Line Width
custom made
Min. Line Spacing
custom made
Surface Finishing
custom made
Impedance control
+/- 4%
Warpage
less than 1%
Packaging Details
New and Original, factory sealed packing, it will be pack in one of these packing type: Tube, Tray, Tape and Reel, Tape and Box, Bulk packing, Bag and etc. Please kindly contact us for more details.
Supply Ability
6312 Piece/Pieces per Week
Quantity (pieces)
> 18190
Lead time (days)
6










4 layer pcb boards bearings FAQs Guide Welcome to our state-of-the-art PCB (Printed Circuit Board) products. We are proud to offer a comprehensive range of high-quality and versatile PCB solutions to meet the constantly evolving needs of the modern electronics industry.Our PCBs are expertly designed and manufactured using the latest technology and advanced techniques, ensuring reliability, durability, and exceptional performance for a wide range of applications. We understand the importance of precision and attention to detail in the production of PCBs and we are committed to meeting stringent quality standards.
1.How are thermal considerations taken into account during 4 layer pcb boards design?
2.What is the role of vias on a 4 layer pcb boards?
3.What is the function of a resistor on a 4 layer pcb boards?
4.How are components selected for a 4 layer pcb boards design?
5.What type of solder is used for 4 layer pcb boards assembly?
6.What is the standard thickness for copper used in 4 layer pcb boardss?
7.What is noise coupling and how can it be prevented on a 4 layer pcb boards?
8.What is the difference between a diode and a capacitor?
9.How are signal integrity issues addressed in 4 layer pcb boards design?
10.What are the benefits of using surface mount technology (SMT) for 4 layer pcb boards?
11.How does a 4 layer pcb boards work?
12.What is the maximum operating temperature of a 4 layer pcb boards?
13.What is the purpose of a ground plane on a 4 layer pcb boards?
14.What is the typical lifespan of a 4 layer pcb boards?
15.Can 4 layer pcb boardss be used in high voltage applications?
16.What is embedded 4 layer pcb boards technology?

1.How are thermal considerations taken into account during 4 layer pcb boards design?

As one of the top 4 layer pcb boards manufacturers in China, we take this very seriously.
Thermal considerations are crucial in the design of printed circuit boards (PCB), as excessive heat can greatly affect the performance and lifespan of electronic components. PCB design engineers must carefully consider thermal management strategies, such as proper placement of heat-generating components, effective heat dissipation techniques, and optimal selection of materials. Thermal simulations and analysis are also commonly used to evaluate and optimize the PCB design to ensure that the temperature of the PCB and its components are within safe limits. By taking into account these thermal considerations, the finished PCB can perform reliably and efficiently, ensuring the overall quality and function of electronic devices.

2.What is the role of vias on a 4 layer pcb boards?

Our company has many years of 4 layer pcb boards experience and expertise.
Vias play a crucial role in connecting different layers of a printed circuit board (PCB). These small, plated holes act as conductive paths, allowing signals and power to pass through the board and reach various components. Vias are also essential for routing traces from one layer to another, optimizing the layout and reducing the size and complexity of the board. Additionally, vias provide structural support and improve thermal management by facilitating heat dissipation.

What is the role of vias on a 4 layer pcb boards?

3.What is the function of a resistor on a 4 layer pcb boards?

We are a new 4 layer pcb boards manufacturer.
The ground plane on a printed circuit board (PCB) serves as a reference point for the electrical signals that flow throughout the circuit. It is typically a large area of copper that is connected to the negative terminal of the power supply and serves as a low-impedance return path for current. Its main purpose is to provide a stable and uniform ground connection for the components on the PCB, helping to reduce electromagnetic interference and ensuring proper signal grounding. Without a ground plane, the circuit may experience noise and other unwanted effects, potentially causing malfunctions or disruptions in its functionality. Therefore, the ground plane plays a crucial role in ensuring the overall performance and reliability of a PCB.

4.How are components selected for a 4 layer pcb boards design?

We pay attention to employee development and benefits, and provide a good working environment in order to improve the efficiency of employees and improve the quality management of 4 layer pcb boards products.
A power rating for a PCB, or Printed Circuit Board, is a measure of the maximum amount of power the board is able to safely handle. This rating takes into account the overall design and materials used in the creation of the PCB, as well as the environment in which it will be used. It is an important consideration in electronics and circuit design as exceeding the power rating can lead to overheating and potential damage to the board and connected components. Properly understanding and adhering to the power rating of a PCB is crucial for ensuring safe and efficient operation of electronic devices.

How are components selected for a 4 layer pcb boards design?

5.What type of solder is used for 4 layer pcb boards assembly?

The most commonly used solder for PCB assembly is a lead-free solder, specifically a tin-silver-copper (SnAgCu) alloy. This type of solder is preferred due to its high melting point, good wetting properties, and compatibility with surface mount technology (SMT) components. Other types of solder that may be used include tin-lead (SnPb) solder and lead-free alternatives such as tin-copper (SnCu) and tin-bismuth (SnBi) alloys. The specific type of solder used may vary depending on the application and industry standards.

6.What is the standard thickness for copper used in 4 layer pcb boardss?

The standard thickness for copper used in PCBs is 1 ounce (oz) or 35 micrometers (µm). However, thicker copper layers such as 2 oz or 3 oz can also be used for higher current carrying capacity or better heat dissipation. The thickness of copper used in a PCB is determined by the design requirements and the intended use of the board.

What is the standard thickness for copper used in 4 layer pcb boardss?

7.What is noise coupling and how can it be prevented on a 4 layer pcb boards?

We are a professional 4 layer pcb boards company dedicated to providing high quality products and services.
Signal traces on a PCB (printed circuit board) are routes created to connect electronic components and allow for the transfer of electrical signals. These traces are typically made from copper and are carefully routed and designed to ensure efficient and reliable signal flow. The routing of signal traces is a critical aspect of PCB design and involves determining the best paths for the traces to minimize interference and optimize signal integrity. This is achieved through techniques such as controlled impedance routing, differential pair routing, and length-matching. Properly routing signal traces on a PCB is crucial for ensuring a functional and high-performance electronic circuit.

8.What is the difference between a diode and a capacitor?

We have a first -class management team, and we pay attention to teamwork to achieve common goals. A diode is an electronic component that allows current to flow in only one direction. It has two terminals, an anode and a cathode, and works by allowing current to flow from the anode to the cathode, but not in the reverse direction.
A capacitor, on the other hand, is an electronic component that stores electrical energy in an electric field. It has two conductive plates separated by an insulating material, and when a voltage is applied, one plate accumulates a positive charge and the other accumulates a negative charge. This allows the capacitor to store energy and release it when needed.

What is the difference between a diode and a capacitor?

9.How are signal integrity issues addressed in 4 layer pcb boards design?

We focus on our customers' needs and strive to meet their expectations, so we take this very seriously.
Signal integrity issues are a common concern in PCB design, as they can greatly affect the performance and reliability of electronic systems. These issues arise from high-speed signal transmissions on the board, which can result in degraded signals, data errors, and even system failures. In order to address these issues, PCB designers must consider various factors such as layout, routing, and component placement to ensure proper signal integrity. This involves implementing signal protection measures such as controlled impedance routing, signal shielding, and minimizing signal crosstalk. Additionally, designers may use simulation and analysis tools to identify and resolve any potential signal integrity problems before the PCB goes into production. By carefully addressing signal integrity issues in the design phase, PCBs can achieve optimal performance and functionality.

10.What are the benefits of using surface mount technology (SMT) for 4 layer pcb boards?

We focus on innovation and continuous improvement to maintain a competitive advantage.
Surface mount technology (SMT) is a popular method for assembling printed circuit boards (PCBs) that offers numerous benefits over traditional through-hole components. Firstly, SMT components are smaller and more compact, allowing for greater PCB density and reducing the overall size of the board. This makes SMT ideal for increasingly miniaturized electronics, such as smartphones and wearables. Additionally, SMT components are typically cheaper and easier to manufacture, leading to cost savings in both materials and labor. SMT also allows for automated assembly, resulting in faster and more efficient production processes. Furthermore, the smaller size of SMT components leads to improved electrical performance due to decreased parasitic effects and shorter signal paths. This makes SMT ideal for high-frequency applications.

What are the benefits of using surface mount technology (SMT) for 4 layer pcb boards?

11.How does a 4 layer pcb boards work?

We maintain a stable growth through reasonable capital operations, focus on industry development trends and cutting -edge technologies, and focus on product quality and safety performance.
A PCB (Printed Circuit Board) is a thin board made of non-conductive material, such as fiberglass or plastic, with conductive pathways etched or printed onto its surface. These pathways, also known as traces, are used to connect electronic components on the board, such as resistors, capacitors, and integrated circuits.

The PCB works by providing a platform for the components to be mounted and connected in a specific circuit configuration. The traces on the board act as wires, allowing electricity to flow between the components and creating a complete circuit.
The process of creating a PCB involves several steps, including designing the circuit layout, printing or etching the traces onto the board, and attaching the components using soldering techniques. Once the components are attached, the board is tested to ensure that all connections are correct and functioning properly.
When a PCB is connected to a power source, electricity flows through the traces, powering the components and allowing them to perform their intended functions. The traces also act as a pathway for signals to travel between components, allowing for communication and data transfer within the circuit.
PCBs are used in a wide range of electronic devices, from simple household appliances to complex computer systems. They provide a compact and efficient way to connect and control electronic components, making them an essential part of modern technology.

12.What is the maximum operating temperature of a 4 layer pcb boards?

We have a professional team that is committed to the innovation and development of 4 layer pcb boards.
The maximum operating temperature of a PCB (printed circuit board) can vary depending on the materials and components used in its construction. Generally, the maximum operating temperature for a standard FR4 PCB is around 130-140 degrees Celsius. However, specialized materials such as high-temperature laminates or ceramic substrates can withstand higher temperatures up to 200-250 degrees Celsius. The maximum operating temperature of a PCB should always be determined by the manufacturer's specifications and guidelines.

What is the maximum operating temperature of a 4 layer pcb boards?

13.What is the purpose of a ground plane on a 4 layer pcb boards?

I have a comprehensive after -sales service system, which can pay attention to market trends in time and adjust our strategy in a timely manner.
A decoupling capacitor is an essential component on a PCB (Printed Circuit Board) which is used to reduce or eliminate high frequency noise between different components. It acts as a buffer between the power supply and other circuit components, by storing electrical charge and then releasing it when there is a sudden change in the supply voltage. This helps to stabilize the power supply, providing a steady and noise-free flow of electricity to the circuit. Furthermore, decoupling capacitors also help to filter out any unwanted signals that may cause interference or disruptions in the proper functioning of the circuit.

14.What is the typical lifespan of a 4 layer pcb boards?

4 layer pcb boards is not a product only, but also can help you comes to money-making.
The typical lifespan of a PCB (printed circuit board) can vary greatly depending on various factors such as the quality of materials used, environmental conditions, and usage. In general, a well-designed and properly manufactured PCB can last for 10-20 years or more. However, some PCBs may fail prematurely due to factors such as corrosion, thermal stress, or mechanical damage. Regular maintenance and proper handling can also extend the lifespan of a PCB.

What is the typical lifespan of a 4 layer pcb boards?

15.Can 4 layer pcb boardss be used in high voltage applications?

We have advantages in marketing and channel expansion. Suppliers have established good cooperative relations, continuously improved workflows, improved efficiency and productivity, and provided customers with high -quality products and services.
Yes, PCBs (printed circuit boards) can be used in high voltage applications. However, the design and construction of the PCB must be carefully considered to ensure it can withstand the high voltage without causing damage or malfunction. This may include using specialized materials, increasing the spacing between components, and implementing proper insulation and grounding techniques. It is important to consult with a qualified engineer or designer when using PCBs in high voltage applications to ensure safety and reliability.

16.What is embedded 4 layer pcb boards technology?

Our products & services cover a wide range of areas and meet the needs of different fields.
Embedded PCB technology refers to the integration of electronic components directly onto a printed circuit board (PCB) during the manufacturing process. This allows for a more compact and efficient design, as well as improved reliability and performance. The components are embedded within the layers of the PCB, rather than being mounted on the surface, resulting in a more streamlined and durable product. This technology is commonly used in applications such as smartphones, tablets, and other portable electronic devices.

What is embedded 4 layer pcb boards technology?

RELATED PRODUCTS & SERVICE

PCB Manufacturing and Assembly in China
Contact Us

pcb board manufacturing How To Contact US

PCB from 1 to 30 layers, HDI, Heavy Copper, Rigid-flex board with "pcb board manufacturing One-Stop" service.

Customer Support

Whatsapp

Contact us via Email

sales@fastechcircuit.com

Live Wechat with Us

Click here